148 research outputs found

    Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension

    Get PDF
    AbstractImbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension.Sham and 2K1C rats were treated with oral atorvastatin 50mg/kg, sildenafil 45mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity.Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients

    Experimental intravascular hemolysis induces hemodynamic and pathological pulmonary hypertension: association with accelerated purine metabolism

    Get PDF
    Pulmonary hypertension (PH) is emerging as a serious complication associated with hemolytic disorders, and plexiform lesions (PXL) have been reported in patients with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se induces PH and angioproliferative vasculopathy and evaluated a new mechanism for hemolysis-associated PH (HA-PH) that involves the release of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy rats, repetitive admin- istration of hemolyzed autologous blood (HAB) for 10 days produced reversible pulmonary parenchymal injury and vascular remodeling and PH. Moreover, the combination of a single dose of Sugen-5416 (SU, 200mg/kg) and 10-day HAB treatment resulted in severe and progressive obliterative PH and formation of PXL (Day 26, right ventricular peak systolic pressure (mmHg): 26.1 1.1, 41.5 0.5 and 85.1 5.9 in untreated, HAB treated and SUþHAB treated rats, respectively). In rats, repeti- tive administration of HAB increased plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD patients had higher plasma ADA and PNP activity and accelerated adenosine, inosine, and guanosine metabolism than healthy controls. Our study provides evidence that hemolysis per se leads to the development of angioproliferative PH. We also report the development of a rat model of HA-PH that closely mimics pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests that in hemolytic diseases released ADA and PNP may increase the risk of PH, likely by abolishing the vasoprotective effects of adenosine, inosine and guanosine. Further characterization of this new rat model of hemolysis-induced angioproliferative PH and additional studies of the role of purines metabolism in HA-PH are warranted

    Ceruloplasmin is an endogenous inhibitor of myeloperoxidase

    Get PDF
    Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nM

    Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase–dependent manner

    Get PDF
    Nitrite (NO2−), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) α1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection

    Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer

    Get PDF
    Nitrite (NO2−) is an intrinsic signaling molecule that is reduced to NO during ischemia and limits apoptosis and cytotoxicity at reperfusion in the mammalian heart, liver, and brain. Although the mechanism of nitrite-mediated cytoprotection is unknown, NO is a mediator of the ischemic preconditioning cell-survival program. Analogous to the temporally distinct acute and delayed ischemic preconditioning cytoprotective phenotypes, we report that both acute and delayed (24 h before ischemia) exposure to physiological concentrations of nitrite, given both systemically or orally, potently limits cardiac and hepatic reperfusion injury. This cytoprotection is associated with increases in mitochondrial oxidative phosphorylation. Remarkably, isolated mitochondria subjected to 30 min of anoxia followed by reoxygenation were directly protected by nitrite administered both in vitro during anoxia or in vivo 24 h before mitochondrial isolation. Mechanistically, nitrite dose-dependently modifies and inhibits complex I by posttranslational S-nitrosation; this dampens electron transfer and effectively reduces reperfusion reactive oxygen species generation and ameliorates oxidative inactivation of complexes II–IV and aconitase, thus preventing mitochondrial permeability transition pore opening and cytochrome c release. These data suggest that nitrite dynamically modulates mitochondrial resilience to reperfusion injury and may represent an effector of the cell-survival program of ischemic preconditioning and the Mediterranean diet

    Nitrite Therapy After Cardiac Arrest Reduces Reactive Oxygen Species Generation, Improves Cardiac and Neurological Function, and Enhances Survival via Reversible Inhibition of Mitochondrial Complex I

    Get PDF
    Three-fourths of cardiac arrest survivors die prior to hospital discharge or suffer significant neurological injury. Excepting therapeutic hypothermia and revascularization, no novel therapies have been developed that improve survival or cardiac and neurological function after resuscitation. Nitrite (NO2−) increases cellular resilience to focal ischemia-reperfusion injury in multiple organs. We hypothesized that nitrite therapy may improve outcomes after the unique global ischemia-reperfusion insult of cardiopulmonary arrest

    Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation

    Get PDF
    NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.This work was supported by National Institutes of Health (NIH) R01 awards [R01 HL 133864 (A.C.S), R01 HL 128304 (A.C.S), R01 HL 149825 (A.C.S), R01 HL 153532 (A.C.S), R01 GM 125944 (F.J.S.), R01 DK 112854 (F.J.S.), 1S10OD021540-01 (Center for Biologic Imaging, University of Pittsburgh), 1S10RR019003-01 (Simon Watkins (S.W.)), 1S10RR025488-01 (S.W.), 1S10RR016236-01 (S.W)]. American Heart Association (AHA) [Established Investigator Award 19EIA34770095 (A.C.S.)], Post-doctoral Fellowship 19POST34410028 (S.Y.)]. American Society of Hematology (ASH) Minority Hematology Graduate Award (A.M.D-O.). Junta de Andalucía grant BIO-177 (P.N.), the FEDER Funding Program from the European Union and Spanish Ministry of Science, Innovation and Universities grant RED2018-102576-T (P.N.)

    AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia

    Get PDF
    Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia  through  the so-called  oxygen-dependent  metabolic  regulation,  which  involves  the competitive  binding  of  deoxyhemoglobin  and  glycolytic  enzymes  to  the  N-terminal  cytosolic domain  of  band  3.  This  mechanism  promotes  the  accumulation  of  2,3-DPG,  stabilizing  the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the  Bohr  effect.  Despite  in  vitro  studies,  in  vivo adaptations  to  hypoxia  have  not  yet  been completely elucidated. Within  the  framework  of  the AltitudeOmics  study,  erythrocytes  were  collected  from  21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following  reascent  after  7days  at 1525m.  UHPLC-MS  metabolomics  results  were  correlated  to physiological and athletic performance parameters. Immediate  metabolic  adaptations  were  noted as early as a few hours from ascending  to >5000m, and maintained for 16 days at high altitude.  Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory
    corecore